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ABSTRACT

This is the third interim report of a study whose purpose is to

develop and apply a generalized theory of coupled modes of propagation

to the study of interactions in distributed microwave devices.

In Sec. I we develop methods for the application of group theoretic

techniques to conservative linear systems that may or may not be uniform.

It is shown that transmission matrices that solve a particular problem

do, in fact, form a group. This group is a continuous (Lie) group and

can be characterized by its infinitesimal transformations. It is shown

that the appropriate infinitesimal transformations can be obtained from

the system operator, R(z). We can then investigate whether or not a

given system is reducible in the group theoretic sense. If so, the

given problem can be replaced by a simpler one. In any case, the

properties of the system can be discussed usefully in terms of the

commutation relations of the infinitesimal transformations.

In Sec. II we continue the work begun in the previous quarter on

non-uniform systems such that the derivative of R is expressible as a

commutator of R with another matrix A. We showed, last quarter, that

such a system is explicitly soluble if A can be chosen to be constant.

We show, here, that this is a special case of a more general class of

explicitly souble non-uniform systems.

We have been able to show that tile matrix A describes the behavior

of the eigenvectors of R. An explicit form for A is obtained and some

of its properties are developed.

There is reason to hope that this type of analysis will prove of

great generality and power in the study of non-uniform systems. However,

a considerable amount of work remains to be done to establish the

method in the generality that appears to be possible.
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I INTRODUCTION

The following work is based on the thought that a conservation law

defines a group. That is, if we consider a II possible systems that

exhibit a given conservation law, we find that their tra.nsmission matrices

form a continuous (Lie) group of the requisite dimensionality.

If we are given a vector differential equation that describes a

system with a known conservation law, then this equation and its boundary

condition determines a trajectory through the space of group elements.

Alternatively, if the group elements are suitably parametrized, then the

vector differential equation and its boundary conditions determine a

trajectory through the space of tie Parameters.

The transmission matrices with different boundary conditions form a

continuous set of matrices that may be embedded in a proper subgroup of

the whole group generated by the conservation law. If so, then tile

behavior of the system can be described within this subgroup. Certain

of its properties then can be obtained by consideration of the subgroup.

In addition, it may happen that this subgroup can be considered as a

representation of a group that is simpler than the original group. Thus,

for example, we may be able to show that a given n-dimensional system can

be expressed as a representation of an appropriate two-dimensional group.

The n-dimensional problem, then, can be replaced by an exactly analogous

two-dimensional one.

To establish this mode of analysis, we will review in some detail

the formulation of the problems that concern us and the necessary parts

of the theory of Lie groups.

A. Till," SYSTEM ANI) ITS CONSEHIVA'fI'ON LAW

We are concerned with linearized systems that are described by a

vector-di fferenti a I equation of the form

dx
- =-jlx (1)
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The n-dimensional column vector x lists the significant system variables

which are functions of the single independent variable, z. For example,

in a TWT, x may list the complex amplitudes of the circuit voltage and

current, and the complex amplitudes of the HF component of space charge

or longitudinal beam current and velocity. If parametric interaction

occurs, we can list these variables at the various frequencies that are

coupled.

The matrix RI is an n x n matrix. If II is independent of z, the

system is said to be uniform. If Rt is a function of z, it isnon-uniform.

It is the latter case that is of principal interest here, since it is

these problems in particular that need more subtle methods of analysis.

In what follows we shall not assume that R is constant, except as

noted.

The solution to Eq. (1) can be written as

x(z) = M(z) x(O) (2)

where M(z) is an n X n matrix that is a function of z such that

M(O) = I (3)

where I is the identity matrix. The constant vector x(O) is the boundary

condition that is assumed to be applied at z = 0.

If we substitute Eq. (2) in Eq. (1), and require that it be valid

for all x(O), then we find

= -jA'! .(4)

dz

Equation (4) with boundary condition (3), can be taken as an

alternative description of the system.

We are concerned with systems that exhibit a conservation law--

conservation of net real power flow, the linearized Manley-Howe relations,

Chu's kinetic power theorem, etc. Such a conservation law can be expressed

as stating the invariance of a quadratic form. That is, we can define a

constant matrix K such that the scalar, s, given by
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s = xt Kx (5)

is independent of z if z is a solution of Eq. (1). (The f means the

hermitian conjugate, or complex conjugate transpose. Hence xf is a row

vector and s a scalar.) We require that K be nonsingular, hermitian

(K - Kt) and independent of z.

It is easily seen, by differentiating Eq. (5) and substituting

Eq. (1), that the necessary and sufficient condition on R is that

KR - RtK . (6)

We say that R is "K-hermitian."

If we substitute Eq. (2) in Eq. (5) and use the boundary condition,

Eq. (3), we find that the necessary and sufficient condition on N is that

Mt KM - K (7)

We call such a matrix "K-unitary."

In what follows, then, we shall be concerned with the class of all

K-unitary matrices. We shall show that this is a group, which we shall

call the "K-group."

As mentioned in the introduction, we consider the system equation,

Eq. (4) and Eq. (3) as determining a trajectory through the designated

K-group.

B. THE K-GROUP

We must, first, show that Eq. (7) does, in fact, determine a group.

A group is defined in terms of a set of elements and a rule of combination.

In this case, the set is the set of all matrices, M, satisfying Eq. (7),

and the operation is matrix multiplication. For the set, then, to form

a group, (1) it must contain the identity, I, (2) every element must have

an inverse in the set, and (3) if A and B are in the set, so is AR.

Clearly M - I satisfies Eq. (7). Hence the set contains the

identity.



Since K is to be assumed nonsingular, its determinant does not

vanish. Since the determinant of the product of matrices is the product

of their determinants, it follows from Eq. (7) that the determinant of

M cannot vanish. Hence M- 1 exists and so does Mt-i. If, now, we pre-

multiply Eq. (7) by Mt '1, and postmultiply by M-1 , we find that

K = (M-')1tM- (8)

Hence M'1 is a member of the set. Hence, every member of the set has an

inverse that is in the set.

Finally, if A and B satisfy Eq. (7), then

(AB)tK(AB) - Bt(AtKA)B

a BKB - K (9)

so that (AB) is in the set.

The set of K-unitary matrices form a group, which we shall call the

"K-group."

The K-group is infinite in the sense that i-t contains an infinity

of elements.

We shall assume that the group is parametrizable at least in the

neighborhood of M - 1. We can define a set of matrices M,, that do not

depend either on M or z, such that we can write

M = I + laM 1  (10)

where the cs's are functions of M which go to zero continuously as M

goes to I. We assume that this representation is single-valued for

sufficiently small a.'s.

(We are skirting around some difficulties, here. To be proper, we

should show that M is a continuous topological group, so that we have

available a proper definition of neighborhood. In addition, the single-

valuedness should be investigated further. However, we shall skip over

these matters.)

The set {M,) are called the "infinitesimal transformations" of the

group.
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Consider, now a solution of Eq. (4) which reduces to the identity

at z = z'. This will be of the form of Eq. (10) with the variable

quantities being functions of both z and z'-i.e., of position and of the

position of the boundary conditions.

M(z,z') = I + Za0ZzZ')Mj

ai(z,z') - 0 at z = z' (1)

We will define the quantities

(ai(ZIz) (12)

The y1 are the coefficients of the first term in the Taylor expansion of

M(zz') with respect to z, about the point where M - I.

If we substitute Eq. (11) in Eq. (4), we have

(z~z' ) a1 (z,z' )
Mi = -ji + Zat(zz')M'}

i

We evaluate this at the point z = z', when the di become zero and

find that

1(z') = jzi~ (z')M i  . (13)

Hence R(z) can also be expressed in terms of the set Mi . B(z) does

not form a group, but its properties do depend on the infinitesimal

transformations of the K-group under discussion.

We note that these conclusions are equally valid whether or not R

is constant. If the system is nonuniform, the coefficients of R, {jyj),

are functions of z, but otherwise there is no change.

It is a theorem of Lie groups that, given appropriate conditions of

single-valuedness, etc., the infinitesimal transformations determine the

group completely.

From knowledge of the K-group, we will be able to determine what

sets of infinitesimal transformations we wish to consider. From Eq. (13)
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we can determine which of these are actually involved in the R describing

a particular system. If we can so choose the complete set that the subset

involved with the given B are the infinitesimal transformations of a

simpler group, then the system can be studied in terms of this simpler

group.

C. TIlE ROTATION GROUP

We will find that the groups we are concerned with are related to,

although not in general identical with, the three-dimensional rotation

group. This is perhaps not surprising since s, defined by Eq. (5), can

be regarded as a quantity analogous to the square of the length of the

vector x. That s is invariant when x is replaced by Mi then says that

the length is constant under the given operation, which may be taken as

the definition of a rotation.

We call this an analogy rather than a definition, because the con-

cept of length becomes obscure. Since K is, usually, not positive

definite, s can be zero or negative. Hence the "length" can be zero or

pure imaginary, even though the vector is non-null.

Regardless of the problems of geometric visualization, it is true

that these operators can be regarded as rotational.

We will, therefore, develop the properties of the rotation group

from their abstract operators.

The rotation group can be described in terms of the three matrices

which can be taken an its infinitesimal transformations. One possible

form for these matrices is

/00 j
Al  0 0 -1 (14)

- 1 0

/0 0 -j
A2 - 0 0 -1 (15)

j 1 0

0 -6 0
A3 - j 0 0 .(16)

0 0 0



Note that we are not saying that A1, A2, and A 3 are a group-they

are not. But they are the infinitesimal transformations, i.e., the M i ,

of a continuous group of M , defined from them according to Eq. (10).

We will not here be concerned with derivation of these matrices.

This can be done by proper parametrization of the rotation group. We are

concerned with the properties of the abstract group, not the particular

properties of rotation operators.

It can be readily verified that these three matrices have the

commutation relations

[AiA 2] AlA 2 - A 2A, - 2A3  (17)

(AIA3] -A1  (18)

[A A] = AA2  (19)

This is not coincidence. It is a general theorem that the set of
infinitesimal transformations of any group have the property that the

commutation of any two of them can be expressed in terms of the set. By

forming linear combinations of the infinitesimal transformations-which

is equivalent to a reparametrization by linear combinations of the

parameters-the commutation relations can be varied to an extent. The

particular form of the A in Eqs. (14), (15), and (16) were carefully

chosen to give Eqs. (17), (18), and (19) which, as we shall see, are

particularly convenient relations.

The commutation relations are the fundamental ones. We can, for

example, change the basis, i.e., the coordinate axes-of the system. If

we do, the infinitesimal transformations undergo a similarity transforma-

tion. They are therefore changed. But it is easy to see that the

commutation relations are invariant under such a change. Hence, the

commutation relations are independent of the coordinate system.

The commutators of Eqs. (17) through (19) have remarkable properties

in determining the interrelations of the significant vectors of the system.

Consider, first, an eigenvector, xi, of A3 :

A x i = X ix (20)
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Then A x,, if it. is not the null vector, is also an eigenvector of

A3 with eigenvalue (X, + 1). For, from Eq. (18):

A3 (Alx1 ) = (AIA3 + Aj)xj

= (X. + )A x1  (21)

[fence we can construct a sequence of eigenvectors of 43 with eigen-

values that differ by unity, that are connected by Al.

Likewise A2xi, if it is not the null vector, is an eigenvector of

As, this time with eigenvalue (X, - 1). For, from Eq. (19),

A3(A2x1) (A 2A3 - A2 )xi

. (Xi - 1)A2x . (22)

Again, we can construct a sequence of eigenvectors of A 3 with eigenvalues

that differ by unity, and that are connected by A 2.

We still need to show that these two sequences are the same, within

scalar factors. Before doing this, however, consider the sequence formed

by A1. The number of eigenvectors of A3 is finite. Therefore, the se-

quence formed by A1, starting with any given eigenvector of A3, has member

x. with largest eigenvalue. That is, there must exist an XN such that

A3xx -=XxN (23)

and

Ax = 0 (24)

Consider, now, the sequence formed from z. by A2. Define

A2xM =XM
I

A2X_ = XN_-_ (25)

8



Then, using Eqs. (25), (19), and (24)

A aN~ AIA 2xM

= -(A2A1 - 2A3 )x,

W -2kMx N (26)

Likewise,

Aix _-2= AIA 2xMl

= (A2A1 - 2A3 )x. 1

= -(2X A2Kx + 2XMlx N- 1 )

= -2(XN + x_-X)x#Z_ (27)

Let us assume that

AlxM_ = -pXM_..&+l (28)

where

PM-k = 2(XN + x-I + ... X-k+i) (29)

which we have shown to be true for k - 1 and 2. Then

AIxMI- l = AIA2xMk

= (A2A1 - 2A3)x' k

W -(A2PN-kXN-k41 + 2X#.kxMk)

= -(P#-k + 2 k)xMk (30)

Hence, AIXNk I is proportional to -x-k witbscalar factor

PM-k-I PM-k + 2XM-k (31)

Hence, the sequences generated by A, and A2 are identical within scalar

factors.

9



We should note the possibility of more than one sequence. It is

quite possible that there are more than one. If so, then the subspace

spanned by each set is an invariant subspace of the whole space, and the

representation is "reducible." We shall return to this later.

We have used, so far, the fact that there must be a vector in the

sequence formed by A 1 which has the largest eigenvalue. Clearly, there

must also be a smallest one. That is, there must be a value x such that

A 3x,, XAx (32)

A2x' - 0 (33)

But, now, consider

A IA2x = A 0 = 0 P - .1x. (34)

Since x is not the null vector, we must have pa-I = 0.

Hence, the sequence of factors PM-k has its two end points fixed.

We have, from Eq. (28) and the above, that

P = P.- = 0 (35)

with the p connected by the recursion formula, Eq. (31), where the X are

connected by

X _ 'kM - k (36).

These conditions are sufficient to determine X . The solution to

Eq. (31) which vanishes at k = M is

P =-" k2 + k(2M - 2XM 1 )

+ pf2 _ M(2M - 2XM 1 ) (37)

If we let k = m- 1 and require that P.-I 0, we can solve for X.:

I
- (M (38)
2

10



It is convenient, and conventional, to let the index run over either
integral or half integral values from (-1/2)(n - 1) to (+l/2)(n - 1),
where n is the total number of vectors in the sequence. Then

M - (1/2)( - 1) and a = (-1/2)(n - 1) so the Xm - (i/2)(n - 1) and

kk = k (39)

Pk M(M + 1) - k(k + 1) (40)

where

1 1
k - (n - 1) ... -1, 0, +1, ... (n - 1) if n is odd

2 2

1 1 1 1
S(n - 1) +.. 2 ... (n + 1) if n is even2 2' 2 2

Thus, from the commutation laws alone, we are able to determine a
great deal of the structure of the operators.

If, then, we can express R in terms of operators which obey these
commutation laws, we will from this fact, be able to deduce many of the
properties of the system. For example, suppose that we can so express R,
and suppose the boundary condition, x0, is an eigenvector of A3 . Then it
is evident that the state vector must, for all z, stay within the subspace
spanned by the set of vectors formed by repeatedly operating on x 0 with

A1 and A2 .

We must, therefore, consider the class of operators that obey the
commutation relations. These are the "representations" of the rotation

group.

D. ANALYSIS OF TilE K-GROUP

We have discussed in some detail the three-dimensional rotation group
because it is a useful e~ample. Not only does it itself appear, on oc-
casion, but the methods of analysis that are effective on it can be extended

to more general groups.

We do wish to emphasize, however, that, in the general case, we cannot
restrict ourselves to the three-dimensional rotation groups.
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Consider an R that is n x n. There are, then n2 components each of

which may be complex. That R is K-hermitian restricts its form, but still

leaves n2 degrees of freedom. For example, if K = I so that R is hermitian,

we require that the diagonal terms be real, and the off-diagonal terms be

the complex conjugates of the terms in the transposed position.

Each degree of freedom may vary with z in any prescribed fashion with-

out destroying the K-hermitian property. Hence the most general n x n K-

hermitian R(z) will involve n2 arbitrary functions of z.

To express such an R in terms of a set of constant infinitesimal trans-

formations M,, as in Eq. (14) requires n2 elements of Mso that we can

match the n2yi terms to the prescribed functions. The three-dimensional

rotation group, however, has only three infinitesimal transformations. It

can, at best, be used to describe an R that has only three prescribed

functions of z.

.We must, therefore, use more complicated groups to describe systems

of greater complexity.

There is auseful qualification to this statement. We can measure each

mode of the system against a reference phase that varies in any prescribed

manner andwith an amplitude scale factor that varies in any prescribed manner.

The transformation to such ameasurement transforms R(z), and can be used

(at least in principle) to remove 2n of the degrees of freedom of R.

For the general case, then, we can, in principle, reduce the problem

to one involving (n2 - 2n) degrees of freedom--and hence, to consideration

of a group that involves (n2 - 2n) infinitesimal transformations.

The difficulties of doing this completely are, very often, formidable.

For example, if n = 2, we find we do not need any infinitesimal transfor-

mation. However, to accomplish the reduction we must exactly solve the

system. If we could do this, then the group theoretic analysis would be

trivial and unnecessary anyway.

It is, however, often possible to accomplish a partial reduction

without excessive difficulty. For example, in the 2 X 2 case, we again

have four degrees of freedom, initially. We can, then, represent the

2 x 2 case in terms of I, A1, A2 , and A3 , where the A's obey the commu-

tation laws of Eq. (17), (18), and (19). The presence of the term in I
prevents this from being a representation of the three-dimensIonal

12



rotation group. However, this term is easily removed. In fact, we can

easily remove both the I and the A 3 term, as we shall see later. Hence,

the problem can easily be reduced to one involving the three-dimensional

rotation group.

Given, thenLa rep-esentation of R in terms of an appropriate set

of infinitesimal transformations obeying known commutation relations, it

is, then, possible to deduce much of the structure of the operators by

methods analogous to those of the preceding section. If, for example,

there exist three operators, Al, A 2 , and A3, which obey Eqs. (17), (18),

(19), then all the conclusions of the preceding section apply, even though

there may be other operators included in R which do not commute with A,

A , and A 3 and whose effect, therefore, is interrelated with the effect

of the A 1 .2,3 parts of R.

Furthermore, we can separate, to an extent, the consequences of the

individual commutation laws. Equation (18), for example, is sufficient

to couple, in chain fashion, the eigenvectors of A. That is, if x is an

eigenvector of A 3 , with eigenvalue. of X, then AIx, if it is not the null

vector, is also an eigenvector of A3 with eigenvalue (X + 1). A l is a
"raising" operator, or, in quantum mechanical terminology, is a "creation"

operator.

Likewise, if Eq. (19) is true, then A 2 is a "lowering" or "annihilation"

operator.

Hence the commutation relations provide a convenient way of obtaining

the structure of the system and of describing the physical consequences of

the various parts of R.

Alternatively, and perhaps more usefully, we can use the desired struc-

ture of the infinitesimal transformation to find the appropriate representa-

tion of I. If, for example, R is obtained as the perturbation of a solved

R 0 , then we can use the known eigenvectors of R0 as the modes of the system.

We can, then map the couplings between these modes that are introduced by

the perturbation. We can, then, take a chain of such couplings and identify

it as A,, and the reverse chain as A 2 . There may be several such chains,

each of which is identified in similar ways. Each chain, then summarizes

the effect of one particular aspect of the perturbation.

We shall, shortly discuss this process in more detail.

13



Thus, even though the three-dimensional rotation group is inadequate

for our purpose, it does serve as a useful example and prototype. We shall,

therefore, in the next section, discuss in some detail its representation.

E. REPRESENTATIONS OF THE ROTATION GROUP

I. GENERAL

The irreducible and non-equivalent representations of the rotation

group are known and may be found in standard textbooks. Our problem, here,

however, is to establish techniques so that we may consider the converse

problem. That is, we wish to write a representation of the rotation group

in a form that is suitable for its identification with components of a

given R.

The most useful way of obtaining representations seems to be their

development as dyad expansions on a set of K-orthogonal, maximally nor-

malized vectors. In the situation where the given system can be considered

as the result of perturbing a system whose behavior is known-usually a

uniform system- the vectors can be the eigenvectors of the unperturbed

system. These vectors, then, are taken as the '"modes" of the system. The

perturbation is considered as introducing coupling between these modes.

We have introduced the concept of K-orthogonality before, but we will

review the pertinent conclusions here.

We consider a complete set of vectors {u,}. (Complete means that they

span the whole space, so that they include a set of linearly independent

vectors in terms of which any vector can be expressed. If the space is

n-dimensional, then a complete set must include exactly n vectors, if they

are all linearly independent.)

We introduce the symbology on the indices (-i) which may be read as
"conjugate i." It is, in other words, a relabelling of the indices. We

require that this relabelling be "one-to-one,"so that to each vector U i

there corresponds one and only one vector uli, which may be the same vector,

and vice versa.

The set is said to be "K-orthogonal" if and only if

ujkgu~ * 0 if i j

14



(Note: the concept of conjugate indices is necessary only because K may

not be positive definite. If K is positive definite, then we must have

-i identical with i. It is only the indefiniteness of K that permits

the possibility of -i being different from i.)

The set is said to be "maximally normalized" as well if

uitKu-i , - i

where ad = 1 if i 9 -i and is ±1 if i - -i. In the latter case, 01, indi-

cates the "parity" of the vector.

We have shown that, if 0 is r. coupling, or perturbation parameter,

such that R(O,z) is K-hermitian for all z, and q, then the eigenvectors

of the uncoupled system R(q,z), can be so chosen as to be K-orthogonal

and maximally normalized.

Given such a set of vectors, we can form the dyads (oaul.,tK). We

shall use these dyads to develop our representations.

Before proceeding to the more complex cases, let us consider, first,

a comparatively simple one. Let

A l = ao-uiu.,tK (41)

A2 = -(1/a)jU i uitK (42)

where i 9 j so that the vectors are not cross-conjugated with each other,

and where a is any constant, real or complex.

Then, from Eq. (17), we find that

A3  = - uu, tK - 0juj tK) (43)

It is easy to verify, then, that Eqs. (18) and (19) are obeyed.

It is of interest tQ note that the eigenvectors of A. are u, and a

with eigenvalues +Y2 and -%, respectively. We also note that

A lui = 0 A2ui = j

Aiu = ao J Oiu i  A2uj  = 0 (44)

in verification of our previous results.
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This representation is then isomorphic to the representation of the

rotation group as 2 x 2 matrices:

A (0 I1)

A2 (O 0)

A3 = (5)

Therefore, if the given R can be expressed in terms of the operators

of Eqs. (41), (42), and (43), then the problem can be replaced by an equiv-

alent one involving the 2 X 2 matrices of Eq. (45).

As the next simplest situation, it may be easily verified that repre-

sentations of the type of Eqs. (41) to (43) can be added if there are no

cross-coupling terms. We can take, for example,

A1  = aioiuiu' tK + ahhu htK

A2  = -(1/a i )cr j. .il. fi - (1/ah6)o fuku,,.htK

1

A3  a 1.(o-.iuiu ,K - aju uj tvK + a hUh ' K - Okuku, k ) (46)

We find that these matrices satisfy Eqs. (17), (18), and (19) providing

i, j, k, and h are all distinct. It is interesting to note, that there is

no requirement that, for example u. should not be identical with u,, or u ..
In this case, there might appear to be coupling between the two sets of

vectors, but in fact, there is not.

We observe that this representation is simply the combination of two

representations of the fo'rm of Eqs. (41), (42), and (43).

The eigenvectors of A are ui, U, 11h and nk" If the R of a given

system can be expressed in terms of AI A21 and A3? then the subspace

spanned by u i and u, and that spanned by u h and uk, are invariant sub-

spaces of the system. Each subspace can, then, be replaced by an anal-

ogous 2 x 2 problem involving the A's of Eq. (45).
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Clearly, we can add as many representations together as we wish,

providing they are wholly decoupled.

Let us consider, now a representation of higher order, We wish A1

to be an operator which establishes a sequence of vectors. Consider for

example:

A1 M a 1o-uiu, ,tjK + a2o-uiu, tk K

where i 9 j 9 k. Then

Al u i X 0

AIuj o IO1 iO°ju i

Aluk = a20'i rhu j

so that A 1 establishes the sequence k - j - i.

We wish A 2 to establish the same sequence in reverse order. We there-

fore let

A 2 = Y1o -UIU, i tK + Y 2 kUkU.j t K (47)

so that

A2u1  y Tcr~co/u1

A2u, = j

A2u k = 0 . (48)

We still need to determine the relationship between the c.,astants. From

Eq. (17) we find

A3 = "{al~o-,i UujK + a 2 Y2 okukU -K

- aiylo-iuiU~i% a2 Y 2c"Tj UU j . (49)

We can easily find that

1 1
[A1As] "a(a 0 1 -" a2 )uuJ tK + a2 (a 2'y'2 -"1Y1)' ,K

(50)
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For this to equal -Al according to Eq. (18), we must have

1

a1Y1 - -1

06 + = -1 (51)

This requires that

aly 1  - '2y2  -2

Hence we take

A,- toriuiuj fK + ao 2juju"k tK (52)

A2 f -(2/aI)o- ju u K - (2/a 2 )O-uuWK (53)

3 ouu, tK -K . (54)

It can be easily confirmed that Eq. (19) is satisfied.

The eigenvectors of A 3 are u,, u, and u k with eigenvalues +1, 0,

-1, as expected.

This representation is isomorphic to the 3 x 3 representation of the

rotation group, for which we may use the matrices given in Eqs. (14),

(15), and (16).

Clearly, again, we can add representations together providing they

do not have vectors in common.

The same technique can be used to develop representation coupling

any number of vectors together. We take Al as the sum of scalars times

the dyads that move us along the chosen sequence. We take A2 as the sum

of different scalars times the dyads that move us along the same sequence

in the reverse order. We can, then, compute A in general terms from

Eq. (17). From either Eq. (17), or (18) we obtain the necessary relations

between the scalars of A 1 and those of A2 This, then, fixes A1 , A2 , and

A3 , within the allowable variations, so that Eqs. (17), (18), and (19)

are satisfied. We have, then, a suitable representation of the rotation

group.
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In this way, we are able to obtain a variety of representa.tions of

the rotation group, and to discuss them in terms of the coupling of

vectors.

2. EXAMPLE

To illustrate our discussion of the meaning of the different repre-

sentations, we shall consider a simple case.

Let us consider the system matrix of a transmission line:

R = Z(55)

for which a suitable K is

g ( ) . (56)

We are not here assuming that Z is independent of z so that this may,

itself, be a non-trivial problem. We shall, however, show the relation

between this problem and one of higher dimensionality, and therefore

greater apparent complexity.

If we take

() U2 (57)
0 1

then 1 2 and c= 1. Hence

A 2  i2U2t ( U)

As. 0 l 0

A - - (58)
20 -I
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Hence /3Z

a Z 2 (59)

What we want to do now is to consider whether or not there are

situations of greater apparent complexity which are, nevertheless, es-

sentially the same as Eq. (55), and for which a solution to Eq. (55) can

be used. This will be true if Eq. (59) is true, but with an A, and A2

that is more complex than Eq. (58).

To consider this problem, let us proceed in the opposite direction

by considering a more complex vector constructed from the vector of

Eq. (55). Let us consider:

/ 2
bxIx 2  (60)

cx 
/

where a, b, and c are constants to be determined. This form is a general-

ization of the "direct product" or Kronecker product of y with itself.

We see, then, that

dy (2axl(dx,/dz)
, d-- bxl(dx 2/dz) + bx2(dxl/dz)

2cx 2 (dx 2 /dz)

( ?ax1 (-/Z)
= bx (-j3x 1/Z) + bx2 (-j/3Zx)

+ 2cx 2 (-jx/Z)

/0 2 a137,/ 1 0 o\ax 2

-j b3/aZ 0 b137/ xIx 2  (61)
0 2C//CZ 0 X

The conservation law states that

s x = 12 12 (62)
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is invariant. We require the existence of a conservation law for the y

vector. We can obtain such a law by observing that

*2x 2*+

s2 = xl*2X2 2 2x1 *x2*xI + x2 *2x2 (63)

must also be invariant.

For this to be a conservation law for the y vector we require,

within a constant factor, that

a =ej'l/

C e= OA (64)

Then, if we set

K' ( 1 0

A* 0 0 
(65)

and

0 /2e' V'/8Z/l

= e2A*e-j0# 00

(66)

we can easily see that ' is K*-hermitian.

We can, nowset

0

A - 0 a2) l 0

/0 0

A A 0 /20a 00

0 1/a 2 0

A; =( o o (7)
0 0 -1

and find that these matrices obey the conservation rules.
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If we set

a1 = ae- k/4

a2  ae ' - 01A(68)

then we find that

/3Z
z' /Z l - 2A (69)

which is the same form as Eq. (59).

The point of this development is not the determination of R' from R,
as we have done, but rather the converse.

Given a three-dimensional system with the matrix R' of the form of

Eq. (66), where Z and /3 may be functions of z. We do not need to solve

it directly. Instead, it is sufficient to solve the equivalent two-

dimensional system with the R of Eq. (55). The solution of the three-

dimensional system is, then, the vector y which is determined through

Eq. (60), from x, the solution of the two-dimensional problem.

This technique, then offers hope that amultidimensional problem can be

reduced to one or a sequence of problems of lower dimensionality and the

answer obtained by the appropriate direct products of the solutions of

the simpler problems.

F. CONSTANT R

Since a uniform system (i.e., one such that 11 is of simple structure

and constant) is, in principle, always soluble by the eigenvectors (and,

if necessary, the generalized eigenvectors) of R, the group theoretic

properties of such systems are principally of academic interest.

Consideration of such systems, however, may clarify the significance of

some of the statements that we have made.

There are several ways of stating the property that makes uniform

systems directly soluble. We may observe, first, that the eigenvectors

themselves each form a one-dimensional representation of the rotation

group. This is the trivial representation of the rotation group that

assigns to each operator the scalar 1.
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In more conventional terms, we know that we can use the eigenvectors

as a basis so that R becomes diagonal. The appropriate similarity trans-

formation is a constant one, and the system has, then, been resolved into

K-orthogonal and maximally normalized modes. It is these modes that

permit direct solution.

A third way of putting it is to say that the eigenvectors each gen-

erates a one-dimensional subspace that is invariant under H and therefore
under any M that is a solution of the system.

When we look for two-dimensional representations, we are in fact

looking for two-dimensional subspaces that are invariant under R. Then,

if x initially lies in such a subspace, it continuously transforms into

a vector in the subspace, and hence is retained permanently within it.

The subspace, again, is invariant under the system matrix, M.

A change to such a basis transforms R into a quasi-diagonal form with

a 2 X 2 matrix on the diagonal in the position corresponding to the given

subspace. If the basis is such that the entire space is divided into dis-

joint invariant subspaces, the transformed R is quasi-diagonal with 2 x 2

matrices along the diagonal.

Any subspace that is spanned by any two eigenvectors of R is evi-

dently, an invariant subspace. On the other hand, if the eigenvectors are

not degenerate, such a subspace can be identified by two vectors that are

not eigenvectors of R.

It is not evident that any two-dimensional invariant subspace is

necessarily a representation of the rotation group. One finds, generally,

an appropriate determination of Al and A 2. However, there is noguarantee

that the resultant A3, determined from Eq. (17), will "fit" the remaining

terms. If not, however, we can correct the discrepancy.

It is shown in the appendix that we can make a transformation of x,

and hence of R, that eliminates all "self-coupling" terms--i.e., all terms

involving (oiu u.itK). Hence we can, after such a transformation, always

write any two-dimensional subspace in terms of Al and A2 alone.

The transformations that are involved amount to a z-dependent renor-

malization of the modes of the system. Specifically, we consider the

system that would occur if there were no cross-coupling terms -i.e., if

all terms involved ou u 1tK(i 9 j) were eliminated. The solution to
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this system is used as Lhe reference for the fuill system, the phase angles
and amp] i tudes of the mo(es bei ng measured by re ference to the solution

of the non-cross-coupled system.

This transformation is valid not only for the uniform systems con-

sidered in this section, but also for non-uniform systems. It is always

possible to eliminate completely all self-coupling terms, regardless of

thei r z-dependence.

G. NON-UNIFORM SYSTEMS

If II is a function of z, then we have a different situation.

If the z-dependence is only in the eigenvalues of R, then the eigen-

vectors can be chosen to be constant, and the previous considerations

apply without exception.

If, however, it is not possible to choose eigenvectors that are

constant, then we can no longer use the one-dimensional representations.

In general, in this case, we must operate with invariant subspaces

of N that are independent of z. If we attempt to use subspaces that are

z-dependent, we can still find operators with the proper commutation

rules, in terms of which R can be decomposed. However, these operators
will not be independent of z, and it does not generally follow, then,

that M can also be expressed in these terms. It. will. follow only if the
derivatives of Al, A and A are also decomposable in terms of A,, A 2,2' 2'23
and A 3 . This appears to be a rather stringent condition, although it

may lead to some special situations of interest.

That constant. invariant subspaces exist is evident. At worst we

can take the whole space, which is constant.

Of probably greater i nterest are those cases in which there exist
proper invariant subspaces. Assuming it. is possible to express 1, pos-
sibly after adjustment of the reference phases, in terms of constant 4's
within the subspace, with the z-dependenrc rontained wholly within the
y factors, then It will lie isomorphlic two-dimensional representations of
the rotation group. The problem, tihen, Canr be replaced by a simpler one.
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H. DECOMPOSITION OF dR/dz INTO A COMMUTATOR

As an immediate application of some of these concepts, we will con-

sider the case when R, which is not necessarily constant but has the property

that there exists a constant matrix C such that

dRA Ct- n - (C, R] (70)

It was shown in the Second Interim Report that this class of non-

uniform systems has the explicit solution

M(z) - exp(-jR - C)z exp Cz . (71)

A problem that was unanswered at that time was the determination of

the systems that belong to this class, what their general properties are,
and what tests can be made to determine if a given system belongs to the

class. Also, no systematic procedure was available for the determination

of the constant C matrix.

We shall find that the representation of R in terms of the infinites-

imal transformations Al, A2 , and A3 of the rotation group, when this is

possible, allows us to find an answer to these questions in certain

circumstances.

We shall here confine our attention to the case when the system can

be expressed as a trajectory in a representation of the three-dimensional
rotation group. That is, we will assume that there exists constant oper-

ators A1 , A 2, and A3 such that Eqs. (17) through (19) are obeyed and such

that R can be written as

R = YIA + Y2A2 + Y3A 3

so that
dR dt dX2  dX3
dz d A + 2  + A3 (72)

dz 77 1 dz 2 dz (

It appears likely that other, more complicated situations could be

handled in similar fashion.
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It is reasonable, then, to look for a constant matrix C which can

be represented in the same way:

C = a1 Al + a 2A2 + a 3A3  (73)

To C we can add any other matrix that commutes with R, or that commute

separately with Al, A2, and A3.

The commutator then is

(C, R] - j(pal 2 - V2yl)[Aj, A2]

+ j(ay 3 - 0 3 y1 )[A1 , A3]

+ pa 2y 3 - 43y2)[A2, A3]

= -2j(aY, 2 - a,2y 3 )A3

-j(al 3 -1371A

+j(a 2Y 3 - a3 Y 2)A 2  (74)

Comparing Eqs. (72) and (74), we see that the necessary and suffi-

cient conditions, under the given assumptions, for the existence of a

decomposition into a commutator are that

dy1
= - 1IY 3 + a3Y1

dY2

dz "2 Y'3 - '3Y2

d'y3 -2aly 2 + 202 
(75)dz Y I

or that

+(T2 ) 3 ((%2 32 (76)

Y23 -2a 0 y 3
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If the y are solutions of Eq. (76), and then Eq. (70) holds. This
does not depend on the constancy of the a, and therefore is the general
condition for Eq. (70).

If the a are required to be constant, then Eq. (76) has the solution

r(z) = exp(Pz)r(0) (77)

where

I'2 (78)

Y3

and P is the matrix of Eq. (76).

We can find, then, by the usual methods that

+2a (I-+(I KK S KZ o%(--a 3(O - CO KZ

+(2ala2 -K 2 ) 2)s COS K-a01(1 - COS KZ

2 2K sin KZ -2alK sin KZ K
2 - 4a I 2

+2a2a 3(1 - cos KZ) +20i%(1 - cos KZ) +4a(+a1 2 COS Kz )
(79)

where

K
2  = 4aIct 2 - 3t (80)

and may be real, imaginary, or complex.

This is valid providing K 9 0. If K = 0, the solution is

7(1 + az/2) 2  a2z 2  -alz(1 + a z/2)

e , a2 z2  (1 - a3z/2)
2  a2z(1 - a z/2.)

2a2z(0 + a z/2) -2a z(1 - a3z/2) I - a2z2/2 (81)
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These solutions are easily obtained by considering the power series

expansion of the exponential and using the Cayley-Ilamilton Theorem which,

in this case, tells us that

p3 . _K2 P

Therefore, a necessary and sufficient condition under the given assumption

is that the y vary according to Eq. (77) where exp(Pz) has the form either

of Eq. (79) or (81). Such a set of y generates a class of systems that

can be solved by the method used here. Furthermore, the matching to

Eq. (79) or (81) will determine the a, and therefore the A.

As a test for whether a given system belongs to this class, the

formulas given leave something to be desired. We can develop some tests

which are necessary, although not sufficient, and which are far easier

to apply.

We can consider Eq. (75) as determining the a in terms of the Y.

We observe that the determinant of the right-hand side vanishes. There-

fore these equations must be redundant. We can find that the condition

for this is that

dy2  dy3  dy,
21 ---- 3  0 (82)

or that

4TT + c (83)

where c is a constant.

Equation (83) is a necessary and sufficient condition, if R and C

can be represented in terms of the rotation group, for dR/dz to be ex-

pressible as a commutator at all, although it is not sufficient to as-

sure the constancy of C. We presume that Eq. (83) is, in some way,

equivalent to the condition that the eigenvalues of R be constant.

We can also eliminate from Eqs. (75) any two of the y. We find

then, assuming that the M are constant,

(d3/dz3 - aOd/dz - 4aat2 a3 )yi = 0 (84)
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.It is necessa ry, aIti tough not suiff icient, th at each of the y shall

obey an eq 1uatj ori ofC the fokrm of Eq. (84) wi th thuc Salle c:oefficients for

a constant C to exist..
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II MATIIEMATICAL TECHNI QUES FOR NON-UNIFOMI

COUPLED- MODE SYSTEMS

A. INTRODUCTION

In Part II-A of Interim Report 2, we considered systems described

by the vector differential equation

dx(z)
dz - jR(z)x(z) (85)

where R may be a function of z. We considered, in particular, those

systems in which R is related to a matrix A by the equation

A -j(A, R] = -j(AR - BA) (86)dz

square brackets being used for the commutator.

Interest in such systems was stimulated by the fact that, if A is

constant--i.e., independent of z--then the system is soluble. Thus, this

is a class of non-uniform systems for which it is possible to obtain an

exact and explicit solution.

Our purpose here is to study this situation in greater depth so as

to obtain better understanding of what is going on, and to determine, if
possible, how to generalize the class of soluble systems in some useful

manner.

We may note, at the start, an interesting and suggestive symmetry.

Suppose there exists a matrix, K, which we call a "metric" and which is

constant, non-singular, and hermitian (K = Kt, the-dagger meaning the

complex conjugate transpose). And suppose that R is, at all values of z,

K-hermitian so that

KR - RfK . (87)

[The general significance of this relation we have discussed elsewhere.

The pertinent aspects will be reviewed later. For the moment, let us

simply take Eq. (87) as given.]
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Let us define the matrix X as

X = xxtK . (88)

Then, since K is constant

dX dx dx t

dz dz dz

= -jRxxtK + jxxtRtK

= -jlbcx t K + jXXtKR

X -jRX + jXR

a -j[R, X1 (89)

Equation (89) is of the same form as Eq. (86), but with X in place of R
and R in place of A. We may suspect then, that Eq. (86) is a useful al-

ternative representation of the system represented by Eq. (89). If A is

constant, it is certainly simpler.

Even if A cannot be chosen as constant, it may be possible to so
choose A that Eq. (86) is still a considerable simplification.

This line of thought suggests the possibility of continuing the

process. If A cannot be chosen as constant, is it possible to choose it

so that

dA
A JB[, A] (90)dz

where B is constant? Or if not, can we choose B so that

as
d -j[C, B (91)dz

where C is constant? And so on.

If, at any point in this process, we do obtain a constant matrix,

then we can start from that point and try to work our way back up the line.
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If, for example, C is constant in Eq. (91), then the solution to Eq. (91)

is

B = e-jCzBoejCz (02)

This expression for B can then be substituted in Eq. (90) and a solution

for A sought. And so on.

This suggests that we have, here, a powerful tool for the analysis

of non-uniform systems. Furthermore, it provides a classification of such

systems according to the number'of steps involved before a constant matrix

is reached.

The results that will be reported here do not completely establish

this method of analysis. There remain several important questions for

which we have been unable, so far, to find rigorous answers. In partic-.

ular, we may cite the following:

(1) Given a matrix R which can be expressed as Eq. (86). Is it
always possible to choose A so as to obtain Eq. (90)--i.e.,
which has constant eigenvalues? It appears that we always

can, at least for R K-hermitian. But we have not proven it.

(2) Assuming that the answer to the first question is yes, does the
sequence of Eqs. (86), (90), (91) always lead eventually to a
constant matrix, or can it be made to? We suspect that it does
not--that it is possible to have an R such that the sequence of
equations cannot be made to terminate. However, this is pure
speculation.

(3) Assuming that the answer to the second question is no, then in
what sense is Eq. (90) simpler than Eq. (86), Eq. (91) simpler

than Eq. (90), etc. Is it a valid approximation scheme, for
example, to take I = R. as the first approximation, A = A. as
the second, etc? We suspect that it is, but we have not proven
convergence, or studied the rate of convergence to determine

its usefulness.

There are, then, serious questions remaining. Nevertheless, the results

we have obtained are sufficient to indicate the value of the approach.

B. K-CONSERVATIVE SYSTEMS

Before considering the problem itself, we shall review some of the

pertinent implications of the existence of a K metric.
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We restrict our attention to systems that exhibit a quadratic con-

servation law. That is, we assume that there exists a constant non-

singular matrix K, which can be taken as hermitian, such that the scalar

quantity, S,

s = xtKx (93)

is preserved (i.e., is independent of z) if the vector is any solution of

the system.

The conservation of energy, the linearized Manley-Rowe relations, and

Chu's kinetic power theorem are examples of such a conservation law and

lead to such a K. It appears that any system that does not contain loss

mechanisms has such a law, although this has not been generally proven.

At least it can be said that the class of systems with such a law does

include a great many systems of considerable interest.

If we differentiate Eq. (93) and substitute Eq. (85), we see that a

sufficient condition is that R be K-hermitian, or that Eq. (87) hold.

The necessity of this requires a little more subtle analysis, but can be

shown, also.

We have also shown that Eq. (87) implies that the eigenvectors and,

if necessary, the generalized eigenvectors of R can be chosen so that they

are "K-orthogonal and maximally normalized." That is, if the set of

vectors {ui) are the eigenvectors and generalized eigenvectors and, if
any degeneracies among them are suitably resolved, then they can be so

normalized that

uilu j = isij (94)

where o. = ±1 and 8.. is the Kronecker delta and is I if i j, or 0
1 ij

otherwise. The symbol (-j) which can be read "conjugate j" indicates a

possible relabelling of the indices. For a given ui, there is only a

single vector of the set such that the scalar, Eq. (94), does not vanish.

We call this vector ui. It may be the same as u., or it may be different.

The complication of the conjugate indices, and the parity terms, cr,

arise because K may not be, and in general is not, positive definite.

In the analysis that follows, we will assume that R is K-hermitian

and that we know, or can find, a complete set of vectors {u,(z)) that are,
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at al.] z, eigenvectors and generalized eigenvectors of R, and that are

everywhere K-orthogonal and maximally normalized, and such that the cr

are everywhere constant.

We shall also assume that these vectors can be differentiated as

many times as necessary. This, in effect, assumes not only that R can

be differentiated but that its "structure" remains constant. If, for

example, R includes a description of the transverse modes of an electron

beam, we must require that the longitudinal field shall not reverse sign,

since this would reverse the parities of the transverse modes.

C. GENERAL THEOREMS

We shall, now, prove some theorems that are of value in establishing,

partially, this method of analysis, and that help to give insight into

its significance.

Theorem 1-A necessary and sufficient condition for the existence of

a matrix V, constant or not, that satisfies

dJ - -7 IV, U) (95)
dz

is that the eigenvalues of U be constant.

This theorem was proven in Part IT-A of Interim Report 2, and we

shall not repeat its proof here.

If we consider U - R, this appears to be a restriction on the system

being considered. It may not be, however. If, in Eq. (85), we let

x . Sy

where S is a function of z, then

(1Y
-- Z y (9 6 )

an( the question now is whether we -. n so choose S that

B' -- s- IN - is- l (97)
dZ
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has constant eigenvalues. We suspect that this is always possible, at

least in principle. If so, then the entire class of K-conservative non-

uniform systems can be studied. This is, however, only a conjecture at

the present time.

We now seek a relation between the V of Eq. (95) and the detailed

structure of U. It is provided by the following theorem:

Theorem 2-If we have a complete set of (u) of eigenvectors and

generalized eigenvectors of U such that

dui

dz -Vui (98)

then Eq. (95) is satisfied with this matrix V. Conversely, given Eq. (95),

we can choose a complete set of eigenvectors and generalized eigenvectors

of U that satisfy Eq. (98).

To prove the first part, first consider, an eigenvector of U:

Uu i 0 XViu (99)

By Theorem 1, Xi is constant. Hence, differentiating, we obtain

dU da. duA

dz dz

or

du- U . jUu- W=
MaijUVu - jVxiu i

- u in - AtU i

- -j[V, Ulu . (100)

Consider, now, a generalized eigenvector such that

Ui Kinu + .i-I (101)
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Again differentiating

dU dui dui du i-
u -U- + X i +

dz dz dz dz

= jLuVi - jV(kiu1 + mi-1 )

jUVu1 - jvwu1

= -j[V, U]u i  (102)

Hence, Eq. (100) holds for any ui, eigenvector or generalized eigenvector.

Since it holds for a complete set of eigenvectors, the operators must be

equal and Eq. (95) must follow.

To prove the second part, we again consider first an eigenvector and

differentiate Eq. (99), substituting now from Eq. (95). We find

(U- iI)(--_z + jVU) - 0 (103)

Alternatively, if we consider a generalized eigenvector and dif-

ferentiate Eq. (101), we find

_dui dl
(U - X -- + jVu d + jVu, (104)

Equation (103) is an eigenvector relation and Eq. (104) is a gen-

eralized eigenvector relation. That is, for example, Eq. (103) states

that the vector (dui/dz + ju) must be in the subspace spanned by the

eigenvectors of U with eigenvalues X i.

If there is degeneracy, we can so resolve the degeneracy that

(du,/dz + jVu,) is a scalar function times ui

+ jVuai - fi(z)ui 
(105)

dz

whether ui is an eigenvector or a generalized eigenvector.
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Let us now define a new set of vectors by the relation

ui = e (106)

If we let

¢ i -j fI (z),z (107)

then the right side of E'q. (105) vanishes and we are left with

dv

i - -jVvi (108)

Hence, Eq. (05) does imply that it. is possible to choose the set of

eigenvectors and generalized eigenvectors {u) so that Eq. (08) is true.

We note that, we have a considerable variation allowed to us, both

in the set {u.} and in the corresponding matrix V. As regards the set

of vectors, any degeneracies may be resolved arbitrarily, and the manner

of resolution may be itself a function of z. Each eigenvector may be

multiplied by an arbitrary non-vanishing scalar function of z without af-

fecting its being an eigenvector. But to each such set of vectors there

is a particular V.

Conversely, we can, in Eq. (95) add to V any matrix which commutes

with U without essentially changing Eq. (95). In particular, we can add

any suitable function of U [a function of f(x, z) is suitable if for all.

z, it is analytic with respect to x in a region that includes all the

eigenvalues of U. We may then add to V the matrix f(U, z).] The corres-

ponding set of vectors is, then, multiplied by appropriate scalar

functions.

We must, therefore, study how we can conveniently specialize V. The

following theorem begins this process.

Theorem 3--If U is A-hermitian at all z, then V may be chosen to be

K-hermitian also at all z.

This follows quickly from the fact that any matrix may be separated

into two components:
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V V 1 + jV 2  (109)

tL (V + K- 'VK) (110)VI 2
1.

V2  - -2j(V - K-'VtK) (111)
2

where V1 and V2 are both K-hermitian.

Further, if U is everywhere K-hermitian, so is dU/dz, as may be

seen by differentiating Eq. (87), and remembering that K is constant.

Hence -j[V, U] is K-hermitian, so that

-jK(V1 + jV2 )U + jKU(V 1 + jV2)

jUt(VIt - jy 2
t )K - J(Vlt - jV2 )UtKf

-jKV1 U + KV2U + jUVI - KIN 2

- jUtVKI + UtV 2$K - jV IU 1K - V2tUtlK

= jKUV1 + KUV2 - jKVIU - KV2U (112)

since U, V1, and V2 are all K-hermitian.

Hence

2KV 2U - 2KIJV 2  (113)

or V2 commutes with U.

But we can add to V any matrix that commutes with U without changing

Eq. (95) in any essential way. Specifically, we can add -jV2 and be left

only with the K-hermitian V1.

We can, without loss of generality, require V to be everywhere K-

hermitian if U is.

This constraint on V implies a constraint on the eigenvectors of U,

as indicated in the following theorem.

Theorem 4--If U is K-hermitian for all z, and if, in Eq. (95), V is

chosen to be K-hermitian for all z, then the K-products of the
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corresponding eigenvectors and generalized eigenvectors of U are in-

variant. In particular, it is possible to so choose them so that they

are everywhere K-orthogonal and maximally normalized.

Consider the derivative of such a product:

d dui f f U du.,j
dz( Ku,) 4 * Ku, +u~t

dz dz dz

- jUi uj - juifKVu-i

= -ji t(KV - ytK)u. (114)

where we have used Eq. (98) of Theorem 1. If V is K-hermitian, the right

hand side vanishes and we must have

u t = X.j (115)

where Xij is constant, independent of z.

On the other hand since U is K-hermitian, we can, for any partic-

ular value of z, choose its eigenvectors and generalized eigenvectors

so that

"yij. = 0ri (116)

as stated in Eq. (94). If the set is chosen so that this is true at one

value, and if V is K-hermitian, we have just shown that it must be true

at all values. Hence the set {ui) can be chosen to be K-orthogonal and

maximally normalized at all z.

Conversely, since U is assumed everywhere K-hermitian, we can then

choose the set {u1} to be K-orthogonal and maximally normalized everywhere.

If we do so, then the V corresponding to these vectors will necessarily

be K-hermitian everywhere. This follows by differentiating Eq. (94) and
substituting Eq. (98). We find that

Uif(kV - V tK)U, U 0 (117)

for all i and j and at all z. Since the set is complete, we must have

V K-hermitian everywhere.
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This property of K-orthogonality and invariant maximal normalization

permits us to write V explicitly as

du.
V = 1'dz u . (118)

We can do this formally by postmultiplying Eq. (14) by ogU,,tK and adding

over all i. Since, for a K-orthogonal and maximally normalized set

I iuiui - (119)
i

Equation (118) follows.

Since V is K-hermitian, we can, alternatively, write

du.t
V = K-VtK -j Oui dz K (120)

or, perhaps better since it explicitly shows V to be K-hermitian,

1 dui u,

1 ta - -u (121)

We should also note that we are still very far from a complete

specification of either the set {uj or of V. Regarding V, we can still

add to it any matrix function of z that is K-hermitian and that commutes

with U. In particular we can add any suitable real function of U.

Regarding the set {u }, we can make a substitution of the form of

Eq. (106), where the qb are scalar functions of z, without altering

either the orthogonality or normalization properties providing only that

(122)

We have, still, an enormous amount of freedom available to us. We

would like to be able to use this remaining freedom to assure that the

resultant V is expressible by an equation similar to Eq. (95)--i.e.o so

that the resultant V has constant eigenvalues. We have not so far found

a general way to do this.
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We can push the problem somewhat further, however. If we differ-

entiate Eq. (121), we obtain

(/V 1 ,d
2ui d 2u t

I E- u'i K -u Ki (123)
dz 2dz2 dz2

If, now, it is possible to define a matrix W so that

d 2u dui

- -2jW (124)
dz2  dz

where W is K-hermitian, then we can substitute this in Eq. (123) and use

Eqs. (118) and (120) to give

dV
dZ- -j[W, V] (125)

The problem, therefore, is to so specify the {ud} after a transfor-

mation of the form of Eq. (106),so that W, defined by Eq. (124) is K-

hermitian. This is a problem that will require further study.

This, then completes the general development of the technique of

analysis in its present state. Before considering a specific example,

we will discuss briefly the technique of obtaining solutions in those

cases in which the sequence of Eqs. (85), (86), (90), etc., is short.

D. SOLUTION OF THE SIMPLER CASES

1. R = R, CONSTANT

The simplest of all systems of this sort is when It itself is con-
stant, R0 . This is the uniform case, and has the formally simple solution

x(z) = e x(0) . (126)

There may be a practical difficulty in obtaining the exponential in

convenient form, but, at least in principle, it can always be done.
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2. A = A0, CONSTANT

The next case is where the A of Eq. (86) is constant. The solution

to Eq. (86) is, then

S jA 0  oe jAz (127)

where R o is R(0). Again there is no difficulty, at least in principle,

since A 0 commutes with the exponential, and the derivative can be taken

without difficulty.

To solve Eq. (85),, then, we let

x(z) = e- AoXy(z) (128)

so that Eq. (85) becomes

- z dy - - "
-je-jA°zAoy + e dz je 0 oy

or

dyd' = -j(R° - A ° )y (129)

and

y(z) * e 0 Y(0 ) (130)

Hence we find that

X(Z) = jA 0 e- j(B0-A 0 )z X(0) (131)

[This form is different from that given in Part 1I-A of Interim Report 2,

Eq. (97). It may be shown to be equivalent, however, and appears to be

a more convenient form.)
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3. B x: Boy CONSTANT

The next simplest case is when the B of Eq. (90) is a constant,

B0.

As above, we have, then,

A we-B0 Aoe iio2(132)

lf, in Eq. (86), we let

R = e ~J0SeJ0 (133)

and note that Bocommutes with its exponential so that

dz

Then Eq. (86) becomes

dS
= -j(B0 -A 0 )S + jS(A0 - Bo) .(134)

Hence we find that

S e-j(A03o) Soe j(AoDBo)X (135)

and

R e-jDoxe j(A0-B)X Z JCA0 -BQ)s ej30' (136)

If, now, in Eq. (85) we let

e- = ~ o eJB -j(Ao00)1Y (137)

we obtain
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dy . -jRy + jeJ(AOBO)z Aoe-i(AO-BO)zy (138)

This expression can be solved by the lemma that, if M and N are

constant matrices, then

O

eMzNe-' Y [M, Nlzn/n! (139)
m=0

where

IkM, N] is the k-commutator

that is, where

[oM, N] = N

[IM, N] = [M, N]

12M, N] = [M[M, N]

[h,+IM, N] = [M[kM, N]] (140)

lience

d-y" "-jROy + jA~y + j ( [.j(A° - B° ) ' A°]z m/n!)y

dz n

- -(Ro - Ao) + i C, y (141)

where

Cn [,j(Ao - ), A0 ] (142)
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-j ( o0 A0 ) z- znz + / .+ )!

y = en Yo (143)

and x is obtained as

jB0 z C o-j(A0 B0 )z -j{(R 0-A0 )z
- Cz +1 /n+fl)} (144)

The complexity of this solution is formidable.. Nevertheless it

is an exact solution to a problem that admits a considerable degree

of non-uniformity.

We shall not attempt, at this time, the exact solution of the

next higher class of problems.

E. NON-UNIFORM TRANSMISSION LINE

We shall, now, consider a specific example: a transmission line

whose impedance is a specific function of z.

This problem is one of general importance, primarily because of

the paucity of known soluble cases in spite of the importance to micro-

wave engineering of various impedance-transforming or matching

transmission-line sections. Our concern here, however, is to determine

the significance of the various operations we have performed, and to

gain insight into the nature of the physical problems to which this

analytic technique applies.

In a lossless transmission line (single mode), described in the

E-I basis, the IR matrix is

13/ 0 (145)

where 1B is the propagation constant and Z is the characteristic

equation.

We shall assume to be constant and allow Z to vary with z.

Since the cigenvalues of R are ±jAthis puts us in position to apply

the techniques developed here.
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It may be seen that a suitable metric for this system, independent

of z, is

K -- (146)

which may be found to lead to the conservation of energy.

We could consider the eigenvectors of Eq. (145). flowever, we

might as well consider a somewhat more general situation. It is not

difficult to determine that the general matrix M(z) which isK-hermitian

and which has constant eigenvalues is given by

a + if g f
M(z) -= (147)

h a - if

where a is a real constant and f, g, h are real functions of z such

that

f2 - gh = b - a2 = c (148)

Here, b is a real constant.. (The constancy of the eigenvalues requires

that, in the characteristic equation, the coefficient of each power of

X shall be constant.)

We could, now, proceed by finding the eigenvectors and going

through the full process. In the present case involving only' 2 X 2 matrix,

it is easier to use brute force. We seek an N of the form similar to

Eq. (147)

N (A(1.49)

such that

-j[N, M . (150)
dz
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We find that we require

lig Gh

g 2Fg - 2Gh

h = 211f - 2fh (151)

These equations,, together with the analogue of Eq. (146)

F 2  Gil = C (152)

where C is a real constant, determine the possible forms of F, G, and H.

They are consistent since, if we substitute them in the derivative of

Eq. (146)

2ff' - gh' - hg' = 0

we do find that the equation vanishes identically.

We could solve Eq. (151) in terms of any one of the functions.

However,, to do so would imply the non-vanishing of various terms, which

we would rather not do.

Let us consider now, our original problem. To put the R of

of Eq. (145) in the form of M, we set

g = ,/Z

h = /3/Z

f =0 (153)

If we substitute these into Eq. (151) we find that we can write:

A = ((154)

7/Z -jK
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Y

where

K 7, dn Z'1' (155)

2Z dz

and w is an arbitrary real function of z. Tie condition of Eq. (152)

requires that w be of the form

w = (K2 - c) (156)

where c is an arbitrary constant, restricted only to being not greater

than the minimum of K
2
.

i2
The matrix A is constant only if K is constant and we set c = K

2 .

By Eq. (155) this is the case of an exponentially tapered impedance,

which is too well known to be interesting.

If, now, we consider the next order of complexity, we find that

we must satisfy

w(ZH) - K'

2wF -2K(N) w' + 2WK

-2wF + 2K(ZH) = w' - 2wK (157)

These equations are consistent. If we subtract 2K times the first

equation from v times the sum of the second and third, we are left

with

KK' = WW' (158)

and this is true by Eq. (156) which holds.

The simplest solution to Eq. (157) is obtained by setting G - 0.

Then

K'

wZ

F - + K (159)
2w
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For B to be constant, F must be constant. Substituting from

Eq. (156) for w', we must have

KK'
+ K C'

(K2 - C)

or

KdK
KdK -dz (160)

(c' - K)(c - K 2 )

or,

-c I 1
In (c' - K) - In (c4+ K)

(c - c1") 2(c12 + c')

+ In (c 2  K) - a - z (161)

2(c1/2 c')

If, on the other hand, we set c= c', then the solution is

1/2 1 ____-___
+ In = a - z (162)

(c' - K) 4c' C' + K

The required variations of impedance are found by integrating K

to give In Z 1/2.

Other solutions are possible, which remain to be worked out.. These

solutions are sufficient,, however, to demonstrate that there is a class

of impedance variations that are soluble, since they give a constant

B in Eq. (90).

We have shown that there does exist a class oF non-uniform systems

that are exactly soluble. We have shown some of the properties of

these systems, and have opened the way to their more detailed analysis.

There remain some serious questions o1' a fundamental nature.. These

were outlined in the introductory section. We have not yet explored

the specific case of a non-iini form Lransmission line in sufficient

depth to give an adequate " feel" of the signi ficance of the various

si tuations.

49



Thus th<re rg s a c on s n idnLble i+ i. o I of (J iOil a investigation

that is needled. However, ,he I apprlnci, does seem tn lo ( i:ilport iiLt in that

it does provide means for cl icidating some of the phenomena that are

possible in non-uniform systems.
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III PROGRAM FOR THE NEXT INTERVAL

During the next interval we will continue work on the following

i tens:

(1) The multiple pumping situation described in Sec. 1I-A of the
First Interim Report will be considered further. We will
attempt to determine, at least in our own minds, if this
leads to a practical design of a potentially useful device.

(2) The analysis of commutator-derived systems given in Sec. II
will be continued. In particular, we shall look for ways
to determine the gross properties of such systems so that

the implications of this analysis can be interpreted in
terms of physical behavior and device possibilities.

(3) The First Technical Note on the topological analysis of
pairwise coupled systems will be issued.

(4) Further study will be made of the group theoretic approach,
if time permits, to determine what use can be made of it.

(5) Surveillance of the current literature will be continued.
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APPENDIX

THE ELIMINATION OF SELF-COUPLING TERMUS IN R
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APPENDIX

THE ELIMINATION OF SELF-COUPLING TERMS IN R

We shall here show that it is always possible to remove the self-

coupling terms from a representation of the system operator. That is,

if the system is described by

dx

dz- jx (A-i)

and R is expanded in terms of a set of constant K-orthogonal maximally

normalized vectors (ut)

R = i .i1 0Urn, (A-.2)

then it is always possible to eliminate the terms in *.glt~il We call

these the "self-coupling" terms since they produce a change in the a

component of x that is in the direction of u,.

To simplify the symbology somewhat, let us set

Ei * " 0;utui(fK (A-.3)

It will be noted that the E1i are, then, idempotent, and the Ei,(ji)

are nilpotent. More generally:

EijEh = bE . (A-4)

Then Eq. (A-2) can be written

R = Y r. (z)E~i (A-5)

The elimination from R of the self-coupling terms then depends on

the following lemma:
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Lemma 1: If ak is a scalar and Ekk and idempotent dyad, then

e = I- (1 - ja, )Ekk (A-6)

This is proved by the series expansion of the exponential, using

the idempotency of E,, :

jakEk I - - E + ... )k" a-
2. n! E k

=I - Ekk

+ 1 -a- 2("n) E k k

jak

= IEk+ e Ekk

- e- jakm 4

As an aside which we shall not use here, but for possible future

reference, we may note the following lemma:

Lemma 2: If at is a scalar and Etj a nilpotent matrix, then

e-JR' I - jaEij (A-7)

Again, we prove the lemma by expanding the exponential in a power

series, this time obtaining the results directly.

Returning now to our immediate purpose, consider a change of

variable given by

x = e- Z (A-8)

where a, is a function of z to be chosen as desired. We may note that

this change affects only the u, component of x. I" a is real it amounts

to making the reference phase angle, agaist whicli the phase of this
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component is measured, a function of position. If the l is complex,
then there is in addition, a z-dependent renormalization of the u,

component of x.

We may substitute this into Eq. (A-i) with Eq. (A-5) for R and

obtaining the derivative of the exponential from Eq. (A-6)

dk e. k +-jaL dy

d dz

- . rXE,,f - (1 - e )Ekly

-ja.k

r-j r e Ei k ik

-j ~rjEjy (A-9)
jfki

If, now, we set

dab
=i r idz

d 0 r t(z)dz (A-10)

then the first term on the left cancels the term in the first sum on the

right with i * k. There remains the following equation:

• dy
e ijaktk& - - X r.ke i kEi

i j E (A-I)



Premultiplying by e expanded by I"I. (A-6), we obtain

dy -j{I - (0 - EW re Y
dzk

-j{I - (1 - ejk)Ekt}) Y e iEij

eja

-i X r e Ek y

j jtri E~ (A- 12)

j ~k

If, now, we set

rI-' = 0 if i = j = k

k if i k, j k

S.e a , if i = k, j 9 k

= i if i k, j 9 k (A-13)

then we have

dy
- E = -j'y (A-14)

by comparison to Eq. (A-5).

56



We have, in fact, eliminated from R the term in Ehh -i.e., tine

self-coupling kth component of R. The other terms are multiplied by

scalar factors if they couple to or from uk (i - k, or j = k), and are

unaffected otherwise. In particular, the other self-coupling terms,

i.e., those in Eha(h # k), are unaffected.

We can, therefore, proceed in the same manner,: with the elimination

of the term in E hh without reintroducing a term in E k.

Since the dyads E1i commute, the law of combination of exponentials

applies. We can, therefore, accomplish the simultaneous elimination of

the self-coupled terms by the substitution

I = exp - Eky.

where

a f r,(z)dz

We have, therefore, a procedure for the complete elimination from R

of all self-coupling terms.
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LITERATURE REVIEW

1. K. Blotekjer, "Transverse Electron Beam Noise Described by
Filamentary Beam Parameters," J. Appl. Phys. 33, 2409-2414
(August 1962).

Summary-The effect of transverse emission velocities and

positional variation (transverse shot noise) on an equivalent

filamentary beam is studied. The frequency dependence of the

noise in the various beam modes is obtained. It is shown that

there is an effect which is similar to the space-charge smoothing

of longitudinal shot noise which acts to reduce the effect of

positional variation. This effect, however, does not seem

sufficient to account for the low noise observed in, for example,

the Adler tube. Hence the author concludes that "successful

operation of the cyclotron-wave parametric amplifier is largely

due to an effect which is not yet understood."

Comment -A useful analysis of the generation of the noise

that is the input to devices using various mode-coupling.. Of

interest also is the clear result that existing theories are not

wholly adequate.

2. D. C. Forster, "Cooling of the Slow Space-Charge Wave with
Application to the TWT," IRE Trans. PGED-9, 449-453 (November 1962).

Summary-An analysis of the beam-cooling method originally

proposed by Sturrock. In this type of device, a fast wave is

first cooled by a Kompfner-null coupler. A slow wave is then

coupled to the fast wave parametrically. Because of the parity

inversion under parametric coupling, the resultant coupling is

passive, or, in our terminology, 8-coupling. Hence the noise on

the slow wave is transferred to the fast wave.. The resultant

cooled slow wave can then be used in a conventional TWT structure.

The analysis given here is based on linear coupled-mode theory,

and involves a detailed study of the effects of the various coupling

terms that might be expected. The results of a computer calibration

are presented, and indicate a possible noise temperature of about

100 0K.
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Comment -As far as we know, the feasibility of beam cooling by

this method has not yet been demonstrated experimentally. This

paper demonstrates to a reasonable degree that the difficulty, if

there is one, is due to the neglect of higher-order linear terms.

What is perhaps needed, instead, is the investigation of the effect

in the much more complicated mode structure found recently by

Tore Wessel-Berg by studying thick beams. In other words, this

paper is interesting, but may be considering the wrong problem.

3, 4. D. L. Bobroff, If. A. flaus, and J. W. Kljiver, "On the Small Signal
Power Theorems of Electron Beams," J. Appl. Phys. 33, 2832 (1962),
and J. W. Kliver"Potential Form of the Small Signal Power Theorem,"
J. Appl. Phys. 33, 2943 (1962).

Summary-The small signal power theorem for electron beams

has been a subject of controversy for about three years.. Certain

difficulties in the previous works by the authors1'2 on this subject

have been discussed by E. L. Chu.3 6 The authors have subsequently

answered in rebuttal. 7

The present papers do not appear to clarify the situation.

Little material not previously published is included, although the

mathematical form of the power theorem has been favorably modified..

Instructive examples are presented.

The following is a bibliography of some of the pertinent

articles on this subject:

1. H.. A. flaus and D. L. Bobroff, "Small Signal Power Theorem
for Electron Beams," J. Appl. Phys. 28, 694 (1957).

2. J. W. Kiuver, "Small Signal Power Conservation Theorem for
Irrotational Electron Beams," J. Appl. Phys. 29, 618 (1958).

3. E. L.. Chu, "Two Alternative Definitions of Small Signal RF
Power of Electron Beams," J. Appl. Phys. 30, 1617 (1959).

4. E. L. Chu, "Comments on Klijver's Paper Entitled Small Power
Conservation Theorem for Irrotational Electron Beams,"
J. Appl.. Phys. 30, 1618 (1959).

5. E. L. Chu, "The Lagrangian and the Energy-Momentum Tensors
in the Perturbation Theory of Classical Electrodynamics,"
Annals of Phys. 9, 76 (1960).
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6. E. L. Chui, "On the Concept of Fictitious Surface Charges of
an 1Hectron Beam," J. Appi. Phys.' 31, 381 (1960).

7. D. L. lBobrolf, 11. A. flius, and J1. W. Kli~ver, "On E. L. Chu's
lDefinition of Small-Signal IIF Power of Electron Reams,"
J. Appi. Phys. 32, 749 (1961).

60



STANFORD
RESEARCH MENLO PARK
INSTITUTE

Regional Offices and Laboratories

Southern California Laboratories
820 Mission Street
South Pasadena, California

Washington Office
808 17th Street, N.W.
Washington 5, D.C.

New York Office
270 Park Avenue, Room 1770
New York 17, New York

Detroit Office
The Stevens Building
1025 East Maple Road
Birmingham, Michigan

European Office
Pelikanstrasse 37
Zurich 1, Switzerland

Japan Office
911 lino Building
22, 2-chome, Uchisaiwai-cho, Chiyoda-ku
Tokyo, Japan

Representatives

Honolulu, Hawaii
Finance Factors Building
195 South King Street
Honolulu, Hawaii

London, England
19 Upper Brook Street
London, W. 1, England

Milan, Italy
Via Macedonio Melloni 40
Milano, Italy

London, Ontario, Canada
P.O. Box 782
London, Ontario, Canada


